GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and $\boldsymbol{*}$	Benefit of doubt
BOD	Follow through
FT	Ignore subsequent working
ISW	Method mark awarded 0, 1
M0, M1	Accuracy mark awarded 0, 1
A0, A1	Independent mark awarded 0, 1
B0, B1	Special case
SC	Omission sign
\wedge	Misread
MR	
Highlighting	
Other abbreviations in mark scheme Meaning E1 Mark for explaining U1 Mark for correct units G1 Mark for a correct feature on a graph M1 dep* Method mark dependent on a previous mark, indicated by * cao Correct answer only oe Or equivalent rot Rounded or truncated soi Seen or implied www Without wrong working 	

Subject-specific Marking Instructions for GCE Mathematics Pure strand

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should
be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
$\mathrm{h} \quad$ For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & 4 \sqrt{45} \\ & =12 \sqrt{5} \end{aligned}$	M1 A1 [2]	or $4 \sqrt{5} \sqrt{3} \times \sqrt{3}$ (not just $4 \sqrt{5 \times 3} \times \sqrt{3}$) or $\sqrt{720}$ or $\sqrt{240} \times \sqrt{3}$ or better Correctly simplified answer	For method mark, makes a correct start to manipulate the expression i.e. at least combines two parts correctly or splits one part correctly
1	(ii)	$\frac{20 \sqrt{5}}{5}=4 \sqrt{5}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	cao, do not allow unsimplified, do not allow if clearly from wrong working	
1	(iii)	$5 \sqrt{5}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	cao www, do not allow unsimplified, do not allow if clearly from wrong working	
2		$\begin{aligned} & k=x^{3} \\ & 8 k^{2}+7 k-1=0 \\ & (8 k-1)(k+1)=0 \\ & k=\frac{1}{8}, k=-1 \\ & x=\frac{1}{2}, x=-1 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { DM1 * } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [5] } \\ \hline \end{gathered}$	Use a substitution to obtain a quadratic or factorise into 2 brackets each containing x^{3} Correct method to solve a quadratic Both values of k correct Attempt to cube root at least one value to obtain X Both values of x correct and no other values	No marks if whole equation cube rooted etc. No marks if straight to formula with no evidence of substitution at start and no cube rooting/cubing at end. Spotted solutions: If M0 DMO or M1 DM0 SC B1 $x=-1$ www SC B1 $x=\frac{1}{2}$ www (Can then get $5 / 5$ if both found www and exactly two solutions justified)

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & \mathrm{f}(x)=6 x^{-2}+2 x \\ & \mathrm{f}^{\prime}(x)=-12 x^{-3}+2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	$k x^{-3}$ obtained by differentiation $-12 x^{-3}$ $2 x$ correctly differentiated to 2	ISW incorrect simplification after correct expression
3	(ii)	$\mathrm{f}^{\prime \prime}(x)=36 x^{-4}$	M1 A1 [2]	Attempt to differentiate their (i) i.e. at least one term "correct" Fully correct cao No follow through for A mark	Allow constant differentiated to zero ISW incorrect simplification after correct expression
4	(i)	$\begin{aligned} & 3\left(x^{2}+3 x\right)+10 \\ & =3\left(x+\frac{3}{2}\right)^{2}-\frac{27}{4}+10 \\ & =3\left(x+\frac{3}{2}\right)^{2}+\frac{13}{4} \end{aligned}$	B1 M1 A1 [3]	$\begin{aligned} & \left(x+\frac{3}{2}\right)^{2} \\ & 10-3 p^{2} \text { or } \frac{10}{3}-p^{2} \\ & \text { Allow } p=\frac{3}{2}, q=\frac{13}{4} \mathbf{A 1} \mathbf{w w w} \end{aligned}$	If p, q found correctly, then ISW slips in format. $3(x+1.5)^{2}-3.25$ B1 M0 A0 $3(x+1.5)+3.25$ B1 M1 A1 (BOD) $3(x+1.5 x)^{2}+3.25$ B0 M1 A0 $3\left(x^{2}+1.5\right)^{2}+3.25$ B0 M1 A0 $3(x-1.5)^{2}+3.25$ B0 M1 A1 (BOD) $3 x(x+1.5)^{2}+3.25$ B0M1A0
4	(ii)	$\left(-\frac{3}{2}, \frac{13}{4}\right)$	B1 [2]	FT i.e. - their p FT i.e. their q	If restarted e.g. by differentiation: Correct method to find x value of minimum point M1 Fully correct answer www A1
4	(iii)	$\begin{aligned} & 9^{2}-(4 \times 3 \times 10) \\ & =-39 \end{aligned}$	M1 A1 [2]	Uses $b^{2}-4 a c$ Ignore $>0,<0$ etc. ISW comments about number of roots	Use of $\sqrt{b^{2}-4 a c}$ is M0 unless recovered

Question		Answer	Marks	Guidance	
5	(i)		B1 B1 [2]	Excellent curve for $y=\frac{2}{x^{2}}$ in either quadrant Excellent curve for $y=\frac{2}{x^{2}}$ in other quadrant and no more. SC B1 Reasonably correct curves in 1st and 2 nd quadrants and no more	N.B. Ignore 'feathering' now that answers are scanned. For Excellent: Correct shape, not touching axes, asymptotes clearly the axes. Allow slight movement away from asymptote at one end but not more. Not finite. For SC B1, graph must not touch axes more than twice.
5	(ii)	$y=\frac{2}{(x+5)^{2}}$	M1 A1 [2]	$\frac{2}{(x+5)^{2}} \text { or } \frac{2}{(x-5)^{2}} \text { seen }$ Fully correct, must include " $y=$ " or " $\mathrm{f}(x)=$ "	
5	(iii)	Stretch scale factor $\frac{1}{2}$ parallel to y-axis	B1 B1 [2]	Or "stretched" etc; do not accept squashed, compressed etc. oe e.g. scale factor $1 / \sqrt{2}$ parallel to x-axis	$\mathbf{0} / \mathbf{2}$ if more than one type of transformation mentioned ISW non-contradictory statements For "parallel to the y-axis" allow "vertically", "up", "in the (positive) y direction". Do not accept "in/on/ across/up/along/to/towards the y-axis"
6	(i)	$\begin{aligned} & \text { Centre }(0,-4) \\ & x^{2}+(y+4)^{2}-16-24=0 \\ & \text { Radius }=\sqrt{40} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	$(y \pm 4)^{2}-4^{2}$ seen (or implied by correct answer) Do not allow A mark from $(y-4)^{2}$	Or attempt at $r^{2}=f^{2}+g^{2}-c$ A0 for $\pm \sqrt{40}$
6	(ii)	(-2, -10)	B1FT B1FT [2]	FT through centre given in (i) FT through centre given in (i)	i.e. (their $2 x-2$, their $2 y-2$) Apply same scheme if equation of diameter found and attempt to solve simultaneously; no marks until a correct value of x / y found.

Question		Answer	Marks	Guidance	
7	(i)	$\begin{aligned} & 8 x<-1 \\ & x<-\frac{1}{8} \end{aligned}$	B1 B1 [2]	soi, allow $-8 x>1$ but not just $8 x+1<0$ Correct working only, allow $-\frac{1}{8}>x$ Do not allow $\frac{1}{-8}$	Allow \leq or \geq for first mark Do not ISW if contradictory Do not allow \leq or \geq
7	(ii)	$\begin{aligned} & 2 x^{2}-10 x \leq 0 \\ & 2 x(x-5) \leq 0 \end{aligned}$ $0 \leq x \leq 5$	$\begin{gathered} \text { M1* } \\ \text { DM1* } \\ \text { A1 } \\ \text { DM1* } \\ \text { A1 } \\ {[5]} \end{gathered}$	Expand brackets and rearrange to collect all terms on one side Correct method to find roots of resulting quadratic 0,5 seen as roots - could be on sketch graph Chooses "inside region" for their roots of their resulting quadratic (not the original) Do not accept strict inequalities for final mark	No more than one incorrect term Allow $(2 x+0)(x-5)$ Do not allow $(2 x-4)(x-3)$, this is the original expression. Dependent on first M1 only Allow " $x \geq 0, x \leq 5$ ", " $x \geq 0$ and $x \leq 5$ " but do not allow " $x \geq 0$ or $x \leq 5$ "
8		Midpoint of AB is $\left(\frac{-2+3}{2}, \frac{6+-8}{2}\right)$ $\left(\frac{1}{2},-1\right)$ Gradient of given line $=\frac{1}{3}$ Gradient of $l=-3$ $y+1=-3\left(x-\frac{1}{2}\right)$ $6 x+2 y-1=0$	M1 A1 B1 B1FT M1 A1 A1 $[7]$	Correct method to find midpoint - can be implied by one correct value Must be stated or used - just rearranging the equation is not sufficient Use of $m_{1} m_{2}=-1$ (may be implied), allow for any initial non-zero numerical gradient Correct equation for line, any non-zero numerical gradient, through their $\left(\frac{1}{2},-1\right)$ Correct equation in any three-term form $k(6 x+2 y-1)=0$ for integer $k w w w$	NB - "correct" answer can be found with wrong mid-pt. Check working thoroughly. Must include "= 0 "

Question		Answer	Marks	Guidance	
9	(i)	$\begin{aligned} & (2 x+3)(x-2)=0 \\ & x=-\frac{3}{2}, x=2 \end{aligned}$	M1 A1 B1 B1 B1 [5]	Correct method to find roots Correct roots Reasonably symmetrical positive quadratic curve, must cross x axis y intercept $(0,-6)$ only Good curve, with correct roots indicated and min point in 4th quadrant (not on axis)	Indicated on graph or clearly stated, but there must be a curve Only allow final B1 if curve is clearly intended to be a quadratic symmetrical about min point in 4th quadrant
9	(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-1=0$ Vertex when $x=\frac{1}{4}$ $x<\frac{1}{4}$	M1 A1 A1 FT [3]	Attempt to find x coordinate of vertex by differentiating and equating/comparing to zero, completing the square, finding the midpoint of their roots oe cao $x<$ their vertex, allow \leq	SC Award B1 (FT) for $x<0$ if clearly from their graph NB Look for solution to 9ii done in the space below 9i graph
9	(iii)	$\begin{aligned} & 2 x^{2}-x-6=4 \\ & 2 x^{2}-x-10=0 \\ & (2 x-5)(x+2)=0 \\ & \\ & x=\frac{5}{2}, x=-2 \\ & \text { Distance } P Q=41 / 2 \end{aligned}$	M1 M1 A1 B1FT [4]	Set quadratic expression equal to 4 Correct method to solve resulting three term quadratic Must have both solutions - no mark for one spotted root FT from their x values found from their resulting quadratic, provided $y=4$	Not $2 x^{2}-x-6=0$ with no use of 4 Allow $\frac{9}{2}$ oe, but do not accept unsimplified expressions like $\sqrt{\frac{81}{4}}$

Question		Answer	Marks	Guidance	
10	(i)	$\begin{aligned} & y=-x^{3}-3 x^{2}+4 x-k x+k \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3 x^{2}-6 x+4-k \\ & \text { When } x=-3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\ & -27+18+4-k=0 \\ & k=-5 \end{aligned}$	M1 A1 M1 A1 M1* DM1* A1 [7]	Attempt to multiply out brackets Can be unsimplified Attempt to differentiate their expansion (M0 if signs have changed throughout) Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Substitutes $x=-3$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ www	Must have $\pm x^{3}$ and 5 or 6 terms If using product rule: Clear attempt at correct rule M1* Differentiates both parts correctly A1 Expand brackets of both parts *DM1 Then as main scheme
10	(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-6 x-6$ When $x=-3, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ is positive so min point	M1 A1 [2]	Evaluates second derivative at $x=-3$ or other fully correct method No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 12 . (Ignore errors in k value)	Alternate valid methods include: 1) Evaluating gradient at either side of -3 2) Evaluating y at either side of -3 3) Finding other turning point and stating "negative cubic so min before max"
10	(iii)	$\begin{aligned} & -3 x^{2}-6 x+9=9 \\ & 3 x(x+2)=0 \\ & \begin{array}{l} x=0 \text { or } x=-2 \end{array} \\ & \text { When } x=0, y=-9 \text { for line } \\ & \qquad y=-5 \text { for curve } \\ & \text { When } x=-2, y=-27 \text { for line } \\ & \qquad y=-27 \text { for curve } \\ & x=-2, y=-27 \end{aligned}$	M1 A1 M1 M1 A1 [5]	Sets their gradient function from (i) (or from a restart) to 9 Correct x-values One of their x-values substituted into both curve and line/substituted into one and verified to be on the other Conclusion that $x=-2$ is the correct value or Second x-value substituted into both curve and line/verified as above $x=-2, y=-27$ www (Check \boldsymbol{k} correct)	Allow first \mathbf{M} even if k not found but look out for correct answer from wrong working. SEE NEXT PAGE FOR ALTERNATIVE METHODS Note: Putting a value into $x^{3}+3 x^{2}-4=$ 0 (where the line and curve meet) is equivalent If curve equated to line before differentiating: M0 A0, can get M1M1 but A0 ww Maximum mark 2/5

APPENDIX 1

Allocation of method mark for solving a quadratic

$$
\text { e.g. } 2 x^{2}-x-6=0
$$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):
```
(2x-3)(x+2)
(2x-3)(x+1)
(2x+3)(x+2)
M1 \(2 x^{2}\) and -6 obtained from expansion
M1 \(2 x^{2}\) and \(-x\) obtained from expansion
M0 only \(2 x^{2}\) term correct
```

2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then M0.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or cscores M0

$\frac{-1 \pm \sqrt{(-1)^{2}-4 \times 2 \times-6}}{2 \times 2}$	earns M1 (minus sign incorrect at start of formula)
$\frac{1 \pm \sqrt{(-1)^{2}-4 \times 2 \times 6}}{2 \times 2}$	earns M1 (6 for c instead of -6$)$
$\frac{-1 \pm \sqrt{(-1)^{2}-4 \times 2 \times 6}}{2 \times 2}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{1 \pm \sqrt{(-1)^{2}-4 \times 2 \times-6}}{2 \times-6}$	M0 (2c on the denominator)

Notes - for equations such as $2 x^{2}-x-6=0$, then $b^{2}=1^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a in both occurrences in the formula would be two sign errors and score M0.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$
\begin{aligned}
& 2 x^{2}-x-6=0 \\
& 2\left(x^{2}-\frac{1}{2} x\right)-6=0 \\
& 2\left[\left(x-\frac{1}{4}\right)^{2}-\frac{1}{16}\right]-6=0 \\
& \left(x-\frac{1}{4}\right)^{2}=\frac{49}{16} \\
& x-\frac{1}{4}= \pm \sqrt{\frac{49}{16}}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

